Mechanical properties of fasteners made of carbon steel and alloy steel
Contents:
> Scope
> Designation system for property classes
> Table 1 — Ratio of nominal yield strength and nominal tensile strength
> Materials
> Table 2 — Steels
> Mechanical and physical properties
> Table 3 — Mechanical and physical properties of bolts, screws and studs
> Table 4 — Minimum ultimate tensile loads — ISO metric coarse pitch thread
> Table 5 — Proof loads — ISO metric coarse pitch thread
> Table 6 — Minimum ultimate tensile loads — ISO metric fine pitch thread
> Table 7 — Proof loads — ISO metric fine pitch thread
> Table A.1 — Relationship between tensile strength and elongation after fracture
> Influence of elevated temperatures on mechanical properties of fasteners
> Elongation after fracture for full-size fasteners
Scope
This part of ISO 898 specifies mechanical and physical properties of bolts, screws and studs made of carbon steel and alloy steel when tested at an ambient temperature range of 10 °C to 35 °C. Fasteners (the term used when bolts, screws and studs are considered all together) that conform to the requirements of this part of ISO 898 are evaluated at that ambient temperature range. They might not retain the specified mechanical and physical properties at elevated temperatures (see Annex B) and/or lower temperatures.
This part of ISO 898 is applicable to bolts, screws and studs
⎯ made of carbon steel or alloy steel,
⎯ having triangular ISO metric screw thread in accordance with ISO 68-1,
⎯ with coarse pitch thread M1,6 to M39, and fine pitch thread M8×1 to M39×3,
⎯ with diameter/pitch combinations in accordance with ISO 261 and ISO 262, and
⎯ having thread tolerances in accordance with ISO 965-1, ISO 965-2 and ISO 965-4.
It is not applicable to set screws and similar threaded fasteners not under tensile stress (see ISO 898-5).
It does not specify requirements for such properties as
⎯ weldability,
⎯ corrosion resistance,
⎯ resistance to shear stress,
⎯ torque/clamp force performance (for test method, see ISO 16047), or
⎯ fatigue resistance.
Designation system for property classes
The symbol for property classes of bolts, screws, and studs consists of two numbers, separated by a dot (see Tables 1 to 3):
a) the number to the left of the dot consists of one or two digits and indicates 1/100 of the nominal tensile strength, Rm,nom, in megapascals (see Table 3, No. 1);
b) the number to the right of the dot indicates 10 times the ratio between the nominal yield strength and the nominal tensile strength, Rm,nom, as specified in Table 1 (yield strength ratio). The nominal yield strength, as specified in Table 3 (Nos. 2 to 4), is:
– lower yield strength ReL,nom, or
⎯ nominal stress at 0,2 % non-proportional elongation Rp0,2 nom, or
⎯ nominal stress at 0,0048d non-proportional elongation Rpf,nom.
Materials
Table 2 specifies limits for the chemical composition of steels and minimum tempering temperatures for the different property classes of bolts, screws and studs. The chemical composition shall be assessed in accordance with the relevant International Standards.
For fasteners that are to be hot dip galvanized, the additional material requirements given in ISO 10684 apply.
Table 2 — Steels
Mechanical and physical properties
The bolts, screws and studs of the specified property classes shall, at ambient temperature (Impact strength is tested at a temperature of −20 °C), meet all the applicable mechanical and physical properties in accordance with Tables 3 to 7, regardless of which tests are performed during manufacturing or final inspection.
Clause 8 sets forth the applicability of test methods for verifying that fasteners of different types and dimensions fulfil the properties in accordance with Table 3 and Tables 4 to 7.
NOTE 1 Even if the steel properties of the fasteners meet all relevant requirements specified in Tables 2 and 3, some types of fasteners have reduced loadability due to dimensional reasons.
NOTE 2 Although a great number of property classes are specified in this part of ISO 898, this does not mean that all classes are appropriate for all fasteners. Further guidance for application of the specific property classes is given in the relevant product standards. For non-standard fasteners, it is advisable to follow as closely as possible the choice already made for similar standard fasteners.
Table 3 — Mechanical and physical properties of bolts, screws and studs
Table 4 — Minimum ultimate tensile loads — ISO metric coarse pitch thread
Table 5 — Proof loads — ISO metric coarse pitch thread
Table 6 — Minimum ultimate tensile loads — ISO metric fine pitch thread
|
Thread d x P |
Nominal stress areaAs,noma mm2 |
Property class | ||||||||
| 4.6 | 4.8 | 5.6 | 5.8 | 6.8 | 8.8 | 9.8 | 10.9 | 12.9/12.9 | ||
| Minimum ultimate tensile load, Fm,min (As,nom × Rm,min), N | ||||||||||
| M8×1 | 39,2 | 15 700 | 16 500 | 19 600 | 20 400 | 23 500 | 31 360 | 35 300 | 40 800 | 47 800 |
| M10×1,25 | 61,2 | 24 500 | 25 700 | 30 600 | 31 800 | 36 700 | 49 000 | 55 100 | 63 600 | 74 700 |
| M10×1 | 64,5 | 25 800 | 27 100 | 32 300 | 33 500 | 38 700 | 51 600 | 58 100 | 67 100 | 78 700 |
| M12×1,5 | 88,1 | 35 200 | 37 000 | 44 100 | 45 800 | 52 900 | 70 500 | 79 300 | 91 600 | 107 000 |
| M12×1,25 | 92,1 | 36 800 | 38 700 | 46 100 | 47 900 | 55 300 | 73 700 | 82 900 | 95 800 | 112 000 |
| M14×1,5 | 125 | 50 000 | 52 500 | 62 500 | 65 000 | 75 000 | 100 000 | 112 000 | 130 000 | 152 000 |
| M16×1,5 | 167 | 66 800 | 70 100 | 83 500 | 86 800 | 100 000 | 134 000 | 150 000 | 174 000 | 204 000 |
| M18×1,5 | 216 | 86 400 | 90 700 | 108 000 | 112 000 | 130 000 | 179 000 | — | 225 000 | 264 000 |
| M20×1,5 | 272 | 109 000 | 114 000 | 136 000 | 141 000 | 163 000 | 226 000 | — | 283 000 | 332 000 |
| M22×1,5 | 333 | 133 000 | 140 000 | 166 000 | 173 000 | 200 000 | 276 000 | — | 346 000 | 406 000 |
| M24×2 | 384 | 154 000 | 161 000 | 192 000 | 200 000 | 230 000 | 319 000 | — | 399 000 | 469 000 |
| M27×2 | 496 | 198 000 | 208 000 | 248 000 | 258 000 | 298 000 | 412 000 | — | 516 000 | 605 000 |
| M30×2 | 621 | 248 000 | 261 000 | 310 000 | 323 000 | 373 000 | 515 000 | — | 646 000 | 758 000 |
| M33×2 | 761 | 304 000 | 320 000 | 380 000 | 396 000 | 457 000 | 632 000 | — | 791 000 | 928 000 |
| M36×3 | 865 | 346 000 | 363 000 | 432 000 | 450 000 | 519 000 | 718 000 | — | 900 000 | 1 055 000 |
| M39×3 | 1 030 | 412 000 | 433 000 | 515 000 | 536 000 | 618 000 | 855 000 | — | 070 000 | 1 260 000 |
Table 7 — Proof loads — ISO metric fine pitch thread
|
Thread d x P |
Nominal stress areaAs,noma mm2 |
Property class | ||||||||
| 4.6 | 4.8 | 5.6 | 5.8 | 6.8 | 8.8 | 9.8 | 10.9 | 12.9/12.9 | ||
| Proof load, Fp (As,nom × Sp,nom), N | ||||||||||
| M8x1 | 39,2 | 8 820 | 12 200 | 11 000 | 14 900 | 17 200 | 22 700 | 25 500 | 32 500 | 38 000 |
| M10x1,25 | 61,2 | 13 800 | 19 000 | 17 100 | 23 300 | 26 900 | 35 500 | 39 800 | 50 800 | 59 400 |
| M10x1 | 64,5 | 14 500 | 20 000 | 18 100 | 24 500 | 28 400 | 37 400 | 41 900 | 53 500 | 62 700 |
| M12x1,5 | 88,1 | 19 800 | 27 300 | 24 700 | 33 500 | 38 800 | 51 100 | 57 300 | 73 100 | 85 500 |
| M12x1,25 | 92,1 | 20 700 | 28 600 | 25 800 | 35 000 | 40 500 | 53 400 | 59 900 | 76 400 | 89 300 |
| M14x1,5 | 125 | 28 100 | 38 800 | 35 000 | 47 500 | 55 000 | 72 500 | 81 200 | 104 000 | 121 000 |
| M16x1,5 | 167 | 37 600 | 51 800 | 46 800 | 63 500 | 73 500 | 96 900 | 109 000 | 139 000 | 162 000 |
| M18x1,5 | 216 | 48 600 | 67 000 | 60 500 | 82 100 | 95 000 | 130 000 | — | 179 000 | 210 000 |
| M20x1,5 | 272 | 61 200 | 84 300 | 76 200 | 103 000 | 120 000 | 163 000 | — | 226 000 | 264 000 |
| M22x1,5 | 333 | 74 900 | 103 000 | 93 200 | 126 000 | 146 000 | 200 000 | — | 276 000 | 323 000 |
| M24x2 | 384 | 86 400 | 119 000 | 108 000 | 146 000 | 169 000 | 230 000 | — | 319 000 | 372 000 |
| M27x2 | 496 | 112 000 | 154 000 | 139 000 | 188 000 | 218 000 | 298 000 | — | 412 000 | 481 000 |
| M30x2 | 621 | 140 000 | 192 000 | 174 000 | 236 000 | 273 000 | 373 000 | — | 515 000 | 602 000 |
| M33x2 | 761 | 171 000 | 236 000 | 213 000 | 289 000 | 335 000 | 457 000 | — | 632 000 | 738 000 |
| M36x3 | 865 | 195 000 | 268 000 | 242 000 | 329 000 | 381 000 | 519 000 | — | 718 000 | 839 000 |
| M39x3 | 1 030 | 232 000 | 319 000 | 288 000 | 391 000 | 453 000 | 618 000 | — | 855 000 | 999 000 |
Influence of elevated temperatures on mechanical properties of fasteners
Elevated temperatures can cause changes in the mechanical properties and in the functional performance of a fastener.
Up to typical service temperatures of 150 °C, no detrimental effects due to a change of mechanical properties of fasteners are known. At temperatures over 150 °C and up to a maximum temperature of 300 °C, the functional performance of fasteners should be ensured by careful examination.
With increasing temperature, a progressive
⎯ reduction of lower yield strength or stress at 0,2 % non-proportional elongation or stress at 0,0048d nonproportional
elongation for finished fasteners, and
⎯ reduction of tensile strength
can be experienced. The continuous operating of fasteners at elevated service temperatures can result in stress relaxation, which increases with higher temperatures. Stress relaxation accompanies a loss of clamp force.
Work-hardened fasteners (property classes 4.8, 5.8, 6.8) are more sensitive with regard to stress relaxation compared with quenched andtempered
or stress-relieved fasteners.
Care should be taken when lead-containing steels are used for fasteners at elevated temperatures. For such fasteners, a risk of liquid metal embrittlement (LME) should be taken into consideration when the service temperature is in the range of the melting point of lead.
Information for the selection and application of steels for use at elevated temperatures is given, for example, in EN 10269 and in ASTM F2281.
Elongation after fracture for full-size fasteners, Af
In Table 3, minimum values for elongation after fracture for full-size bolts, screws and studs (Af,min) are specified for the property classes 4.8, 5.8 and 6.8 only. Values for the other property classes are given in Table C.1 for information. These values are still under investigation.
| Property class | 4.6 | 5.6 | 8.8 | 9.8 | 10.9 | 12.9 |
| Af,min | 0,37 | 0,33 | 0,20 | — | 0,13 | — |

